AEROSPACE 4.0 @ SONACA

Nicolas Steinier Head of Manufacturing Numerical Method's Smart Manufacturing 4.0 Nicolas Van Hille Research and Technology Manager

SONACA GROUP KEY FIGURES

10 28 6 countries Aerostructure Engineering offices

* Sonaca & LMI Aerospace consolidated

WHAT DO WE DO ?

- **1**. Aim of the presentation is not to 'show off', but to list our needs
- 2. Connectivity enters in :
 - Manufacturing (IoT) -> N. Steinier
 - Product -> N. Van Hille

SMART MANUFACTURING

Nicolas Steinier Head of Manufacturing Numerical Method's Smart Manufacturing 4.0

WHICH NEEDS FOR THE FUTURE ?

OEM NEEDS

In the context of a **complex and multiprocesses manufacturing value chain**, the part process **traceability** is one of the first step to Machine Learning, Big Data and **SMART manufacturing**. Either in detail parts manufacturing or complex assemblies, **part traceability** is the key to track and trace the **productivity and quality** improvements.

=> What are the solutions to support this **traceability** in **an aggressive manufacturing process** where parts face high temperature, corrosive environment, high deformation, curing, high pressure...?

=> What solutions exist to track and trace parts in a complex production process?
=> What solutions exist to track and trace assembly steps in an worldwide supply chain?

WHAT ARE NEXT YEAR'S AIRCRAFTS MANUFACTURING CHALLENGES ?

- 1. Rate increase where market standards are
 - **1.** Lowest cost is no more a discussion... it is obvious
 - 2. Highest quality level
 - **3**. On time delivery
- 2. Optimize value chain in worlwide supply chain
- 3. Increase flexibility: quick reponse to rate change
- 4. Increase product customization: quick response to product change implementation

MOVE FROM EFFICIENCY TO EFFECTIVENESS BY KILLING NON ADDED VALUE WORK

How can connectivity help us ?

- 1. Process tracking in a complex production process
- 2. Parts tracking in a complex worlwide supply chain

PROCESS TRACKING IN A COMPLEX

PRODUCTION PROCESS

PROCESS TRACKING IN A COMPLEX PRODUCTION PROCESS

- **Parts Process tracking is the basement for:**
 - Work In Progress improvement
 - Production Bottle neck's decrease
 - Production Asset's optimization
 - Improve Overall Equipment Efficiency
- **Parts Traceability is key to improve customer service:**
 - Quality improvement
 - End to end Root cause analysis
 - Genealogy tracking of products
 - Non Quality cost cut
 - **C** Reaching operational excellence with Six Sigma processes

FROM ALUMINUM SHEET TO FINAL PRODUCT

C Example of primary part complex production process

©SONACA 2018. All rights reserved. Confidential and proprietary document.

Example of a complex process flow (Stretch forming skin)

=> What solutions exist to track and trace parts in a complex production process?

EXAMPLE OF A COMPLEX PROCESS FLOW (STRETCH FORMING SKIN) TRACEABILITY

Multi support marking depending on process constrains

=> What are the solutions to support traceability in an aggressive manufacturing process where parts faces high temperature, corrosive environment, high deformation, curing, high pressure...?

PARTS TRACKING IN A

WORLDWIDE SUPPLYCHAIN

AN AIRCRAFT IS LEGOBOX WITH WORLDWIDE SUPPLY CHAIN...

WORLDWIDE SUPPLY CHAIN...

- S Worksharing in a global organization is defined with multi constraints
 - **Cost optimization**
 - Production plant's specialities
 - **Customer location and constraints**
 - **Production Capacity**
 - Legals and customs constraints
 - € ...

Today trough ERP data collection and planification the « On Time Delivery » has become a key success factor for SONACA...

... but will it be still possible in the future by keeping a cost competitive organization?

=> What solutions exist to track and trace parts & assemblies in a worldwide supply chain?

WE SEE OBVIOUS BENEFITS...

- By using connected technologies, the extended supply chain monitoring will allow us to:
 - connect with logistics applications
 - Connect to customers need's through their systems
 - Connect to supplier's systems
 - Decrease obsolescence costs
 - Decrease WIP
 - Decrease logistics costs (direct and indirect costs)
 - €..

- 1. Find the best technologies to support an extended supply chain.
- 2. Find the best technologies to integrate all subsidiaries and maintain their

freedom of movement to improve locally

MOVE FROM EFFICIENCY TO EFFECTIVENESS...

...with the help of connected technologies.

©SONACA 2018. All rights reserved. Confidential and proprietary document.

SMART AEROSTRUCTURES A LOOK TO THE FUTURE

Nicolas Van Hille Research and Technology Manager

WHICH NEEDS FOR THE FUTURE ?

WHAT ARE AIRCRAFTS FUTURE DRIVERS ?

- 1. Total Cost of Ownership (TCO)
 - **1.** The only driver for commercial aircrafts
 - Increasingly important for business jets
 (-> + and + through leasing)
 - 3. Even for military aircrafts
- 2. Environment : reduction of emissions (CO₂, No_x) and noise
- 3. Keeping safety as a priority !

Airline Total Cost of Ownership Breakdown

How can connectivity help us ?

- 1. Structural Health Monitoring (SHM)
- 2. Loads data gathering

In 1980's, several flight accidents imposed use of Damage Tolerance on aircrafts :

- Currently, inspection is mainly manual and implies grounding aircraft
- Related costs (including grounding time) estimated to <u>70 bn\$/y</u>

- **Idea is to have 'self diagnosing' structures**
 - \Rightarrow Structural Health Monitoring was born...
 - \Rightarrow With the intention to shift from a <u>time</u> based inspection to a <u>condition</u> based inspection

What must be monitored ?

- **Cracks in metallic structures**
- Delaminations/fiber failures in composite structures (impact damages)
- Shocks
- **Sector** Extensive vibrations (due to excessive freeplay for instance)

• ...AND LOADS DATA GATHERING

Philosophy :

- Currently, loads used for design are defined by simulations and verified by flight tests (=> e.g : safety factor of 1.5 used)
- If loads history was gathered, this would lead to :
 - 1. Conservatism reduction
 - 2. More reliable loads (less risk during development of new aircrafts)
 - 3. Possibility to measure the part ageing
- \Rightarrow Clear interest for a reliable and accurate way of measuring loads or stress levels :
 - Accelerations
 - Aerodynamic pressures
 - Temperatures
 - Interface loads
 - Stress in critical components
 - Deflections

WE SEE OBVIOUS BENEFITS...

- Major short term benefits :
 - **1.** Reduction of A/C grounding time
 - 2. Elimination of costly disassemblies and inspections
 - 3. Automatize inspection => increase safety (reduce risks of human errors)
- Major long term benefits :
 - **1.** Weight reduction thanks to :
 - Damage tolerance change of philosophy (from time based inspection to condition based inspection)
 - More accurate loads

EXISTING TECHNOLOGIES

- Eddy current
- Electrical gauges (signal disrupted when crack appears)
- Comparative Vacuum Monitoring
- Ultrasonic Lamb waves (wave reflected in case of a damage)

US lamb waves

Optical fiber sensors (wavelength of signal modified when deformation appears)

...

Major challenges Opportunities to be worked on

- **1.** Cost of sensors too high for positive business case
- 2. Coverage area : small details (flaws) must be detected in a very large structure
- **3.** Validation / certification :
 - Reliability must be demonstrated
 - Damage tolerance philosophy will be changed
- 4. Standardization of sensors will be needed
- 5. Security related to wireless (hacking)

THE BEST WAY TO PREDICT THE FUTURE IS TO INVENT IT...